Global minimizers for a p-Ginzburg-Landau-type energy in R

نویسندگان

  • Yaniv Almog
  • Leonid Berlyand
  • Dmitry Golovaty
  • Itai Shafrir
چکیده

Given a p > 2, we prove existence of global minimizers for a p-GinzburgLandau-type energy over maps on R with degree d = 1 at infinity. For the analogous problem on the half-plane we prove existence of a global minimizer when p is close to 2. The key ingredient of our proof is the degree reduction argument that allows us to construct a map of degree d = 1 from an arbitrary map of degree d > 1 without increasing the p-Ginzburg-Landau energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees

Let D = Ω\ω ⊂ R be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy Eε(u) = 12 ∫

متن کامل

Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions

In a simply connected two dimensional domain Ω, we consider Ginzburg-Landau minimizers u with zero degree Dirichlet boundary condition g ∈ H1/2(∂Ω;S1). We prove uniqueness of u whenever either the energy or the Ginzburg-Landau parameter are small. This generalizes a result of Ye and Zhou requiring smoothness of g. We also obtain uniqueness when Ω is multiply connected and the degrees of the vor...

متن کامل

From the Ginzburg-Landau Model to Vortex Lattice Problems

We introduce a “Coulombian renormalized energy” W which is a logarithmic type of interaction between points in the plane, computed by a “renormalization.” We prove various of its properties, such as the existence of minimizers, and show in particular, using results from number theory, that among lattice configurations the triangular lattice is the unique minimizer. Its minimization in general r...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers

Let Ω be a 2D domain with a hole ω. In the domain A = Ω \ ω consider a class J of complex valued maps having degrees 1 and 1 on ∂Ω, ∂ω respectively. In a joint work with P. Mironescu we show that if cap(A) ≥ π (subcritical domain), minimizers of the Ginzburg-Landau energy E κ exist for each κ. They are vortexless and converge in H(A) to a minimizing S-valued harmonic map as the coherency length...

متن کامل

Capacity of a multiply-connected domain and nonexistence of Ginzburg-Landau minimizers with prescribed degrees on the boundary

Suppose that ω ⊂ Ω ⊂ R. In the annular domain A = Ω \ ω̄ we consider the class J of complex valued maps having degree 1 on ∂Ω and ∂ω. It was conjectured in [5] that the existence of minimizers of the Ginzburg-Landau energy Eκ in J is completely determined by the value of the H-capacity cap(A) of the domain and the value of the Ginzburg-Landau parameter κ. The existence of minimizers of Eκ for al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008